Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Hui Zhang,^{a,b}* Liang Fang,^{a,b} Richard Dronskowski,^b Klaus Kruse^b and Runzhang Yuan^a

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, People's Republic of China, and ^bInstitut für Anorganische Chemie, RWTH Aachen, Professor-Pirlet-Straße 1, 52056 Aachen, Germany

Correspondence e-mail: huizhangskl@yahoo.com

Key indicators

Single-crystal X-ray study T = 223 KMean σ (C–C) = 0.003 Å R factor = 0.018 wR factor = 0.046 Data-to-parameter ratio = 23.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, (C₃H₅N₂)₂[SnCl₆], contains discrete $[SnCl_6]^{2-}$ anions and two imidazolium $(C_3H_5N_2^+)$ cations. The Sn^{IV} atom is located on a center of inversion and is octahedrally coordinated by six Cl⁻ ions. N-H···Cl hydrogen bonds form a three-dimensional hydrogen-bonded structure.

Bis(imidazolium) hexachlorostannate(IV)

Received 4 January 2005 Accepted 10 February 2005 Online 19 February 2005

Comment

González et al. (1994) reported the tin and imidazolium (imH) complex $(imH)_2[Sn_2(NO_3)_4(\mu-OH)_2Me_4]$. This complex consists of imidazolium cations and $[Sn_2(NO_3)_4(\mu-OH)_2 Me_4$ ²⁻ anions, with the imidazolium rings hydrogen bonded to the nitrate groups of neighbouring units and to the hydroxyl bridging groups of the anion.

The tin and imidazole (im) complexes, Sn(im)₂Cl₂ (Vasnin & Geanangel, 1989) and Sn(im)₂Cl₄ (Garnovskii et al., 1966), have also been investigated.

The present structure, (I), is built up from an octahedral $[SnCl_6]^{2-}$ anion and imidazolium cations. The ions are held together via N-H···Cl hydrogen-bonding interactions. The Sn-Cl distances range from 2.4128 (7) to 2.4470 (7) Å and the N-H···Cl from 3.318 (2) to 3.3935 (2) Å.

Experimental

SnCl₄ (1 mmol) and imidazole (2 mmol) were dissolved in a solution of 2 N HCl (10 ml) and the resultant solution was slowly evaporated at room temperature. The compound was obtained as prismatic colorless crystals after several days.

Figure 1

The unique cation and centrosymmetric anion of the title compound. © 2005 International Union of Crystallography Displacement ellipsoids are shown at the 50% probability level. [Symmetry code: (a) 1 - x, 2 - y, 2 - z.]

Printed in Great Britain - all rights reserved

metal-organic papers

Crystal data

 $\begin{array}{l} (C_{3}H_{5}N_{2})_{2}[SnCl_{6}]\\ M_{r} = 469.57\\ Monoclinic, P2_{1}/c\\ a = 7.4650 (15) Å\\ b = 8.0670 (16) Å\\ c = 12.411 (3) Å\\ \beta = 98.16 (3)^{\circ}\\ V = 739.8 (3) Å^{3}\\ Z = 2 \end{array}$

Data collection

Bruker SMART APEX CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.43, T_{\max} = 0.66$
9551 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0201P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.018$	+ 0.3722P]
$wR(F^2) = 0.046$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
1820 reflections	$\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$
79 parameters	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

 $D_x = 2.108 \text{ Mg m}^{-3}$

Cell parameters from 1820

Mo $K\alpha$ radiation

reflections

 $\theta = 2.8-28.3^{\circ}$ $\mu = 2.79 \text{ mm}^{-1}$

T = 223 (2) K

 $\begin{aligned} R_{\text{int}} &= 0.026\\ \theta_{\text{max}} &= 28.3^{\circ}\\ h &= -9 \rightarrow 9\\ k &= -10 \rightarrow 10\\ l &= -16 \rightarrow 16 \end{aligned}$

Prism, colourless

0.40 \times 0.25 \times 0.15 mm

1820 independent reflections 1672 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Sn1-Cl2 Sn1-Cl3	2.4128 (7) 2.4137 (8)	Sn1-Cl1	2.4470 (7)
Cl2-Sn1-Cl2 ⁱ Cl2-Sn1-Cl3	180 89.522 (16)	Cl2 ⁱ -Sn1-Cl1 Cl3-Sn1-Cl1	89.507 (17) 90.87 (3)
$Cl2^{i}$ -Sn1-Cl3	90.478 (16)	$Cl3^{i}$ -Sn1-Cl1	89.13 (3)
Cl2-Sn1-Cl3	90.493 (17)	CII-3III-CII	180

Symmetry code: (i) 1 - x, 2 - y, 2 - z.

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
N2-H2···Cl1 ⁱⁱ	0.87	2.62	3.327 (2)	139
$N1 - H1 \cdot \cdot \cdot Cl2^{iii}$	0.87	2.65	3.318 (2)	135
$N1-H1\cdots Cl3^{iii}$	0.87	2.71	3.3935 (19)	137

Symmetry codes: (ii) x, y - 1, z; (iii) $-x, y - \frac{1}{2}, \frac{3}{2} - z$.

The H atoms were constrained to an ideal geometry, with C–H distances of 0.94 Å and N–H distances of 0.87 Å. All H atoms were refined as riding, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}$ (parent atom).

Figure 2

The crystal structure of the title compound. Dashed lines indicate hydrogen bonds

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL*.

HZ thanks DAAD for a scholarship.

References

- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Garnovskii, A. D., Osipov, O. A., Panyushkin, V. T. & Pozharskii, A. F. (1966). Zh. Obshch. Khim. 36, 1063–1069.
- González, A. S., Castiñeiras, A., Casas, J. S., Sordo, J. & Russo, U. (1994).
- Inorg. Chim. Acta, 216, 257–260. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin,
- USA. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Vasnin, S. & Geanangel, R. A. (1989). Inorg. Chim. Acta, 160, 167-170.